model { for (r in 1:R) { real ps[C]; for (c in 1:C) { real log_items[I]; for (i in 1:I) { log_items[i] = y[r,i] * log(PImat[i,c]) + (1 - y[r,i]) * log(1 - pi[i,c]); } ps[c] = log(Vc[c]) + sum(log_items); } target += log_sum_exp(ps); }}model { for (r in 1:R) { real ps[C]; for (c in 1:C) { real log_items[I]; for (i in 1:I) { log_items[i] = y[r,i] * log(PImat[i,c]) + (1 - y[r,i]) * log(1 - pi[i,c]); } ps[c] = log(Vc[c]) + sum(log_items); } target += log_sum_exp(ps); }}model { for (r in 1:R) { real ps[C]; for (c in 1:C) { real log_items[I]; for (i in 1:I) { log_items[i] = y[r,i] * log(PImat[i,c]) + (1 - y[r,i]) * log(1 - pi[i,c]); } ps[c] = log(Vc[c]) + sum(log_items); } target += log_sum_exp(ps); }}model { for (r in 1:R) { real ps[C]; for (c in 1:C) { real log_items[I]; for (i in 1:I) { log_items[i] = y[r,i] * log(PImat[i,c]) + (1 - y[r,i]) * log(1 - pi[i,c]); } ps[c] = log(Vc[c]) + sum(log_items); } target += log_sum_exp(ps); }}
Exercise 2
Complete the parameters and transformed parameters blocks for the MDM data.